

Reducing the cost of carbon capture and storage, London, 26th March 2013

Lowering the cost of electricity generation with CCS through CO₂ absorbers developments

Dr Mathieu Lucquiaud, Royal Academy of Engineering Research Fellow, The University of Edinburgh <u>m.lucquiaud@ed.ac.uk</u>

Acknowledgements: Dr Xi Liang, Dr Prashant Valluri, Prof Jon Gibbins

Origins of the project

Reasons for development

Methodology basis

Deployment of CCS needs to follow multiple pathways

Future-proofing CCS power plants for technology developments

- □ Motivations for future-proofing power generation asset Utilities
 - Keep the plant license to operate by securing compliance with legislation New solvent becomes Best Available Technology (e.g. for lower carryover in flue gas) Level of capture increases beyond ~ 90%
 - **Improve power plant economics**
 - Increase plant capacity (MW sent out for sale) Raise efficiency Reduce exposure to carbon costs Reduce operating costs Enhance reliability and availability

Motivations for future-proofing power generation asset - Society

Technology options that allow developments that occur during the early stage of CCS deployment to be subsequently incorporated into new plants to lower the cost to society of electricity generation will potentially be worth billions to the UK over the next decades

Future-proofing CCS power plants – How much is it worth? Methodology

Real option Analysis (ROA)

- A real option is the right but not the obligation to undertake some business decision; it is typically the option to make, abandon, expand, or contract a capital investment.
- ROA is often applied when an alternative, deterministic net present value method fails to capture value of an option involved in sequential decision-making

In this context

 The option is the right – but not the obligation – to undertake an upgrade of the capture technology of an existing coal plant with post-combustion capture.

Illustrative simulated paths for annual average electricity selling price

Illustrative simulated Paths for the Electricity Output Penalty (EOP) of post-combustion capture

Future-proofing CCS power plants – How much is it worth?

% of original capex	1%	2%	3%	4%	5%	6%	7%
Capital cost at Upgrade (\$M)	17.6	35.1	52.7	70.2	87.8	105.3	122.9
Average value of the option (\$M)	393	365	341	311	288	264	241
Average Value of the Option (% of total plant CAPEX)	22.4%	20.8%	19.4%	17.7%	16.4%	15%	13.7%
Impact on LCOE (\$/MWh)	-2.76	-2.76	-2.74	-2.75	-2.75	-2.75	-2.76
Probability of upgrading twice or more	100%	100%	99.8%	94.8%	86.5%	77.0%	51.7%
Probability of upgrading three times or more	79.5%	39.2%	22.3%	9.5%	3.1%	0.2%	0%

Future-proofing CCS power plants – How much is it worth?

Probability distribution of exercising the option to upgrade the capture technology in a future-proofed CCS power plant

Future-proofing CCS power plants – Engineering options to incorporate new improved solvents

Critical piece of hardware Description of performance lock-in		Possible future-proofing strategies	Relevant solvent properties	
Cross flow heat exchanger	 Increased temperature pinch at higher solvent flow rates lead to increased solvent energy of regeneration 	 Space in heat exchanger structure for additional surface area if necessary 	Heat capacity Enthalpy of absorption Reaction kinetics Vapour liquid equilibrium Diffusivity of CO ₂ in solution Diffusivity of reaction products Viscosity Density Surface tension	
Desorber column	 Inability to operate at elevated operating pressure or below atmospheric 	 Reinforce mechanical structure for elevated pressure/sub-atmospheric operation Maximise pressure design rating where codes allow this to be done at minimal cost. 	Enthalpy of absorption Thermal stability	
Absorber column	 Inability to operate with improved solvents requiring more surface area and/or residence time 	 Provision for additional, unpacked, height in the absorber Space for (additional) intercooling infrastructure 	Reaction kinetics Vapour liquid equilibrium Diffusivity of CO ₂ in solution Diffusivity of reaction products Viscosity Density Surface tension	
CO2 Pipeline	Inability to transport additional CO2	Strategies to compress and transport 95% or	N/A	
	at increased capture levels.	higher of the likely future CO ₂ production from the plant (these will depend on the number and size of compressors fitted and the pipeline system downstream)		
Heat recovery system into power cycle feed water heating train	 Inability to benefit from increased heat recovery at lower steam extraction level from power cycle 	 Space for additional heat exchanger in compressor train(s) and/or for additional condensate and heating medium flows Space for additional boiler condensate circulating pumps or for change of impellers/motor size. 	Heat capacity Temperature of regeneration Enthalpy of absorption Mass transfer properties	

Origins of the project

Reasons for development

Methodology basis

Costain and Edinburgh CO₂ absorber project (RECAP) Overview

- 12 months Research & Development project supported by DECC CCS Innovation Programme – Start Feb 2013
- Develop novel ways to build CO2 absorber columns with an emphasis on modularisation
- Options to implement future solvents in existing CCS power plants to keep lowering the cost of low-carbon electricity.
- Reduce the Engineering, Procurement and Construction costs of CO2 absorber columns

ILLUSTRATIVE LEVELISED COST OF ELECTRICITY BREAKDOWN

Based on Redpoint: Decarbonising the GB power sector: evaluating investment pathways, generation patterns and emissions through to 2030, A Report to the Committee on Climate Change, September 2009.

2008 capital costs, assumed £30/tCO₂ carbon price, gas price £12.5/MWh_{th}, coal price £6.25/MWh_{th}. 10% interest rate

Origins of the project

Reasons for development

Methodology basis

Reducing the cost of carbon capture and storage, London, 26th March 2013

Lowering the cost of electricity generation with CCS through CO₂ absorbers developments

Dr Mathieu Lucquiaud, Royal Academy of Engineering Research Fellow, The University of Edinburgh <u>m.lucquiaud@ed.ac.uk</u>

Acknowledgements: Dr Xi Liang, Dr Prashant Valluri, Prof Jon Gibbins