

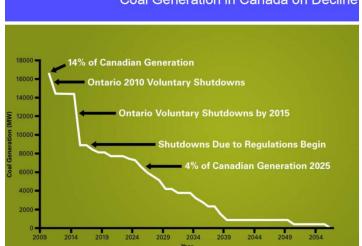
CANSOLV TECHNOLOGIES INC.

SaskPower Boundary Dam 3 Project Update & some Lessons Learned

March 2013

Cansolv

Cansolv Technologies, Inc.

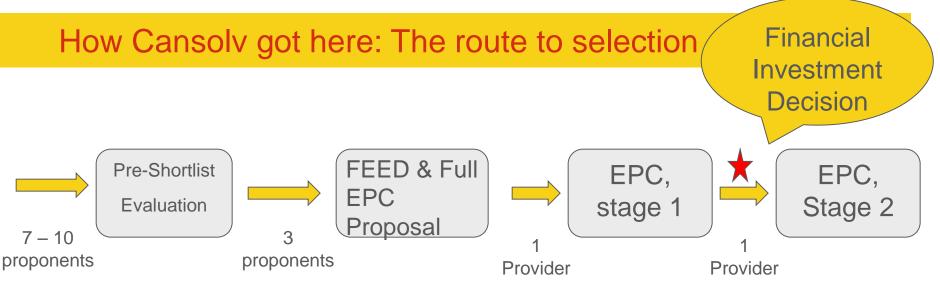

Agenda

- **1. Why CCS? SaskPower perspective**
- 2. How Cansolv got involved
- **3.** Design Objectives
- 4. Design puzzle: important considerations
- **5.** Major equipment / Commercial summary
- 6. Absorber & Regenerator
- 7. Design Challenges / Lessons Learned

Project Summary – Owners perspective

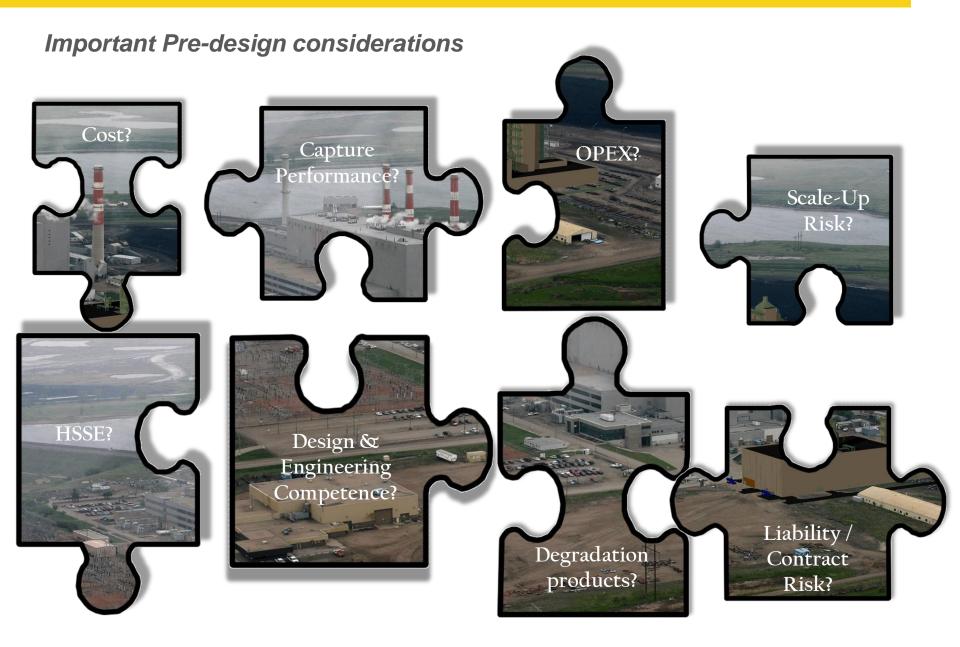
- Why CCS for SaskPower at BD3?
 - Coal is cheap and abundant in Saskatchewan
 - 2. Oil & Gas is strong EOR presence for CO_2 off-take
 - Regulations have arrived predicted to worsen
 - 4. 240MM CAD funding support to evaluate project (get it off the ground)
 - SaskPower want to be recognized as leaders and innovators in environment, power generation and CCS

Regulations Have Arrived


September 2012, federal regulations announced limiting CO_2 emissions

- $\circ~$ Limit of 420 tonnes CO_2/GWh ~(equivalent to natural gas combined cycle)
- Existing units must comply at 50 years of age or shut down

April 2011, received approval for building a capture facility



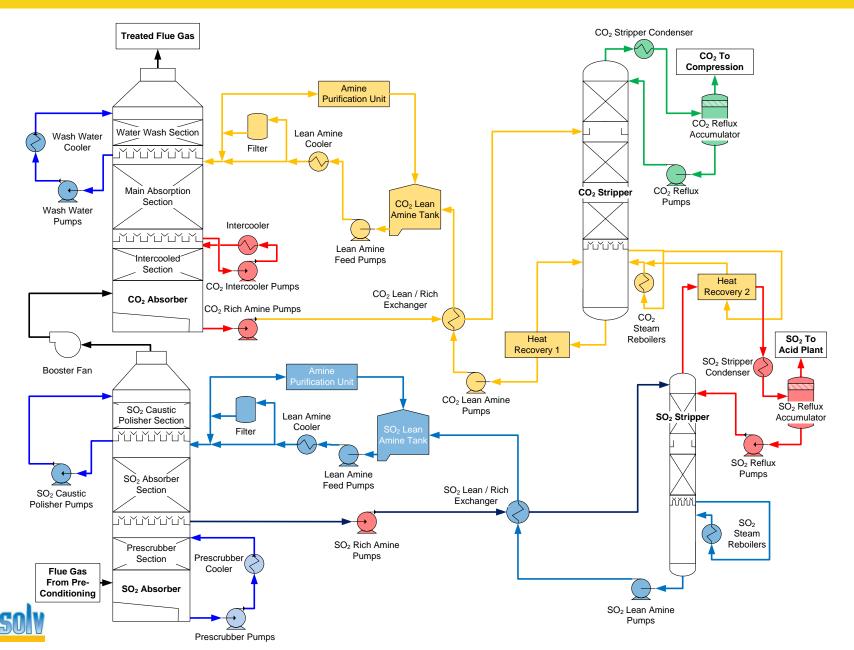
Coal Generation in Canada on Decline

- FEED included vigorous design verification by SaskPower
 - Checked compatibility & degradation using actual BD coal
 - Scale-up analysis performed and submitted
- FEED included risk analysis & mitigation
- EPC broken into 2 stages
 - 1. Detailed Design and Long Lead Procurement
 - 2. Construction, Start-up and Warranty Test Run
 - FEED and full EPC Proposal deliverables were key to SaskPower understanding the full cost of technology

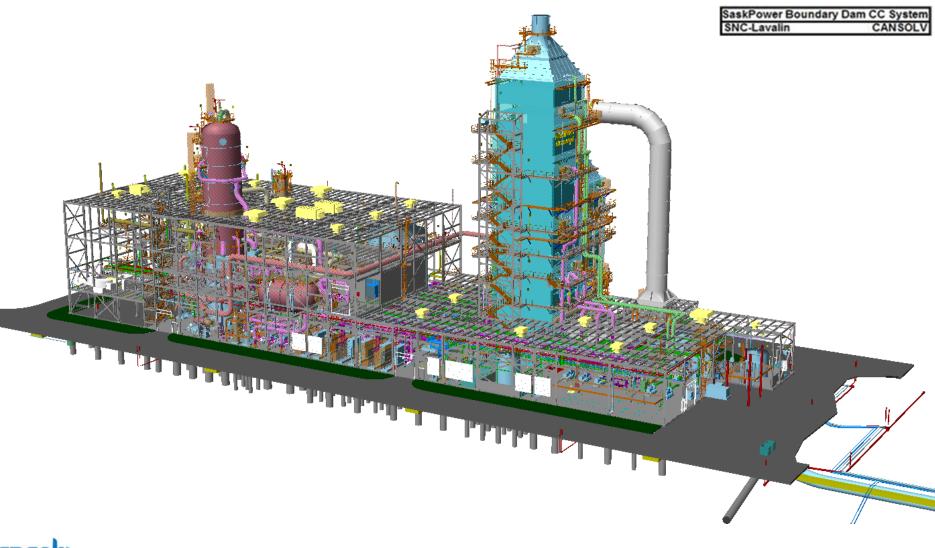
The Design Puzzle: fitting the pieces

Piecing together a successful design...

Can lead to a successful Construction

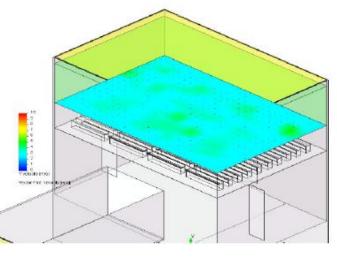

SASKPOWER DESIGN BASIS / REQUIREMENTS

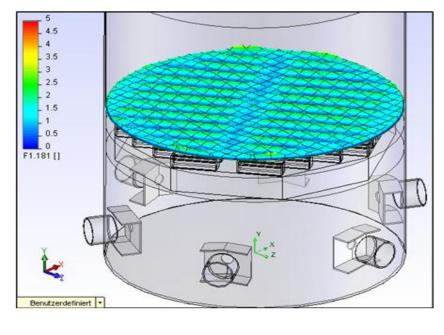
- Lignite coal fired power plant (150 MW)
 - ■~12% CO₂, 1000 ppmv SO₂
 - 90% Capture required
- Near-zero liquid effluent
- No negative environmental impact (air or water emissions)
- Simple, proven design (user friendly)
- Lowest possible energy consumption
- Commercial guarantees on Capture rate, Steam, Solvent consumption

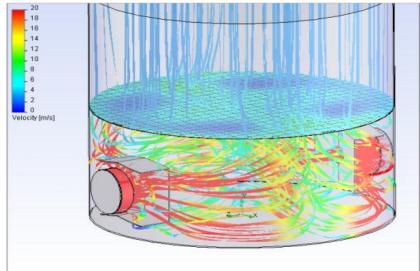

KPI's

- Overall CO₂ capture steam consumption: ~2.5 GJ/ton CO₂
 - $_{\circ}$ or just less than 1 ton steam / ton CO₂
- 90% capture
- EOR grade CO₂ purity

THE PLAN (PFD)

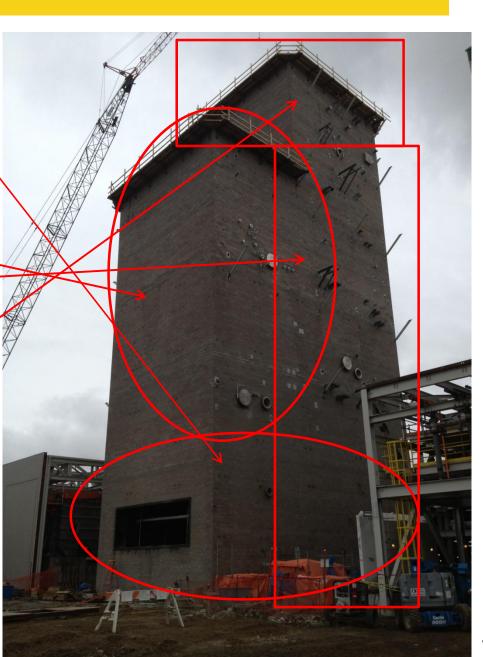

THE PLAN (PFD)





LARGE TOWER DESIGN: CONFIRMED BY CFD

- Use CFD to model distribution (including for square / rectangular)
- Factory Acceptance
 Tests of liquid
 distributors
- Careful design of structural components



SASKPOWER: ABSORBERS

- Installation complete
- Prescrubber section (higher corrosion resistance zone) quenches gas and removes some dust, chlorides and fluorides
- SO₂ Absorber removes SO₂
- CO₂ Absorber removes CO₂
- Water wash (cooled) is last line of defense – keeps amine from exiting the system
- Shared Common Wall (plot-space and cost savings)
- Acid resistant lined concrete construction (Stebbins)
- Integrated development with SNC, Stebbins and Sulzer (packing Vendor) minimized on-site time and labour and optimized overall design

SASKPOWER: CO₂ REGENERATOR

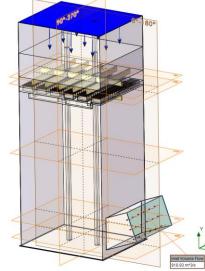
- Installation complete
- One of the largest strippers worldwide
- Main source of energy consumption for capture plant
- 5 large Compabloc reboilers
- Equipped with MVR heat recovery
- Constructed offsite

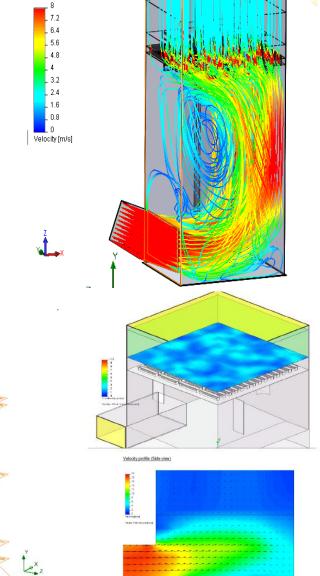
8 meters

Major Equipment

CO ₂ Absorber	Ceramic tile lined concrete packed tower, $11m \ge 11m \ge 54m$	
Prescrubber/ SO_2 Absorber	Ceramic tile and carbon brick lined concrete packed tower, 5.5m x 11m x 31m	Supplier: Stebbins
CO ₂ Amine Tank	Ceramic tile lined concrete tank, 11 m dia x 18.5m height	
CO ₂ Stripper	Packed steel tower, 304SS 8m x 43m height	Supplier: SNC- Lavalin
SO ₂ Stripper	Packed steel tower, 316SS top, AL6XN lower section, 2m dia x 25m T/T	Supplier: SNC- Lavalin
Packing	All Mass transfer packing and Internals	Supplier: Sulzer
Reboilers	5 X Compabloc HX (largest available)	Alpha-Laval
Booster Fan	2240 KW	Supplier: Covent
MVRs	1120 Kw (SO ₂) & 2240 KW (CO ₂)	Siemens

LESSON LEARNED #1: ABSORBER GEOMETRY


Detailed engineering reviews done to confirm compatibility and effectiveness, including:


- CFD analysis
- Value Engineering
- Aspen + design modeling
- Estimate TIC Cost comparison

Outcome: Design Validation

 CFD analysis confirmed expected performance and mechanical design

 Rectangular/Square geometry equivalent in process and *superior* in costs

LESSON LEARNED #2: ABSORBER MOC

Detailed engineering reviews done to confirm compatibility and effectiveness, including:

- Review of past corrosion coupon analysis
- Vendor qualification
- 3rd party specialist confirmations
- Estimate TIC Cost comparison

OUTCOME: MOC SELECTED

 Analysis and studies confirmed compatibility of alternate (to steel) MOC
 Concrete structure (with acid resistant lining) equivalent in process and *superior* in costs

LESSON LEARNED #3: CHIMNEY TRAY DESIGN

- During Design, it was highlighted the chimney tray design (industry standard used in past) was unproven for BD conditions and scale
- Verification at lab-scale, an existing client and RWE revealed risk existed for amine loss into prescrubber blowdown due to design inadequacy
- Small amine losses as well as increase in water treatment philosophy might be a result

OUTCOME: IMPROVED DESIGN


- Chimney cover design and installation covers (or hats) meant to prevent liquid from passing down through chimneys modified to prevent liquid from passing around the chimneys or through opening.
- Riser height is increased and chimney hat is redesigned (increased width with baffle plate) to avoid splashing of liquid back to the riser.

Water droplets splashing inside chimney

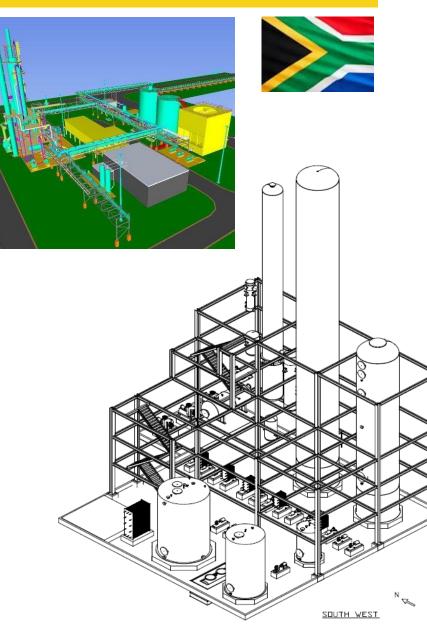
New designed hat

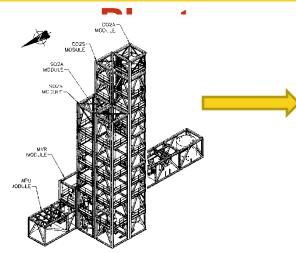
Riser, Height is increase

One Slide Summary – De Risked Scale-Up

- 1,000,000+ tpy CO₂ captured
- CO₂ sold to Cenevous for EOR
- SO₂ (~60 tpd) converted to acid & sold
- Overall investment: CAD 1.24BB
- Detailed HSE performed, mitigations complete
- Construction @ 80%+
- Start-up will be December 2013
- Unique Cost savings features employed
 - Material on construction: Ceramic/carbon tile lined concrete absorbers & lean amine tank
 - Rectangular tower to save on plot space and optimize packing design/installation
 - Integrate Heat Recovery between SO₂ and CO₂ systems for ultimate energy performance
- Unique plant permitting experience (operation & environmental)
- Unique and repeatable integration experience
 Capture plant integrated into new build power block
- Unique proven constructability: Only commercial scale project worldwide

Additonal slides

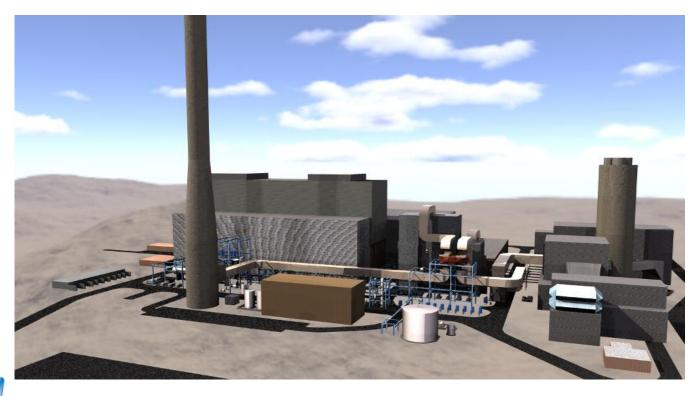



Cansolv CO₂ Capture Unit at Lanxess

- Location: South Africa
- Scale: 170 tpd CO₂ capture
 - —90% removal
- Natural Gas Boilers
 —Not CCGT's
- EPC in progress (Detailed Design)
- Construction complete: June 2013
- CO₂ generated for on-site use
- Strategy: Project makes client self-sufficient on steam and CO₂

RWE SO₂ & CO₂ Capture Demonstration

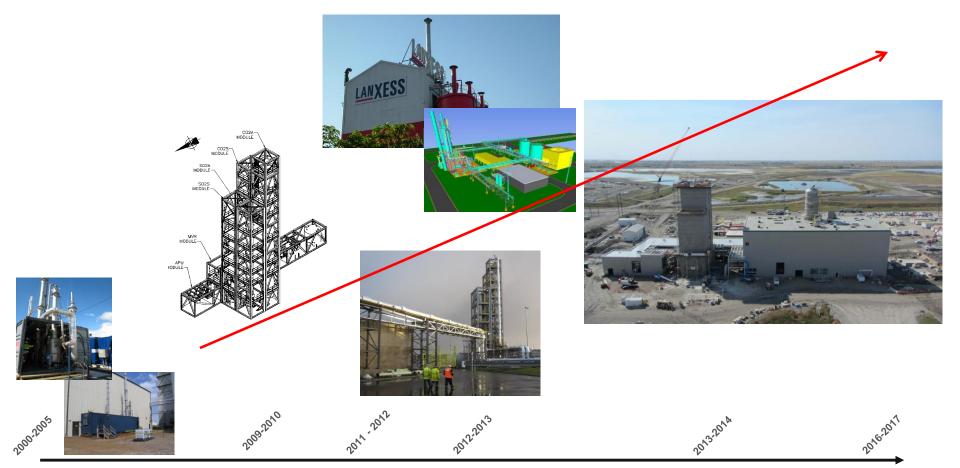
Location: Coal-Fired power Plant, Wales


- → 50 ton/day CO₂ capture (~3 MW)
- → 12 % vol CO₂ & 1,000 ppmv SO₂
- > 90% removal of CO₂
- Complete Chinese Modular Construction
- Conforms to UK regulations and CDM
- Will demonstrate capture plant ability to adapt to UK power needs
- In Operation since Q1 2013

Shell/SSE Peterhead – CCGT CO₂ Capture

- Selected by SSE to be capture provider based on a paid competitive Pre-FEED competition (vs 2 other competitors)
- Peterhead project selected by DECC to receive funding March 2013 ("UK Competition")
- Will be a retrofit of a ~300MW CCGT to include CCS
- Sequestration of CO₂: Goldeneye (off-shore North Sea)
- FEED starts Q2, projected start-up is 2017





Cansolv – De-Risked Scale-Up

Scaling Up CO₂ capture

- Integrated Learnings
- Guaranteed Performance
- Design, Engineer \rightarrow Deliver

Cansolv Scale-up – proven constructability

	Boundary Dam Design	Peterhead Design	Guodian Duyun Design	
Flue Gas Type	Coal Retrofit	Gas Retrofit	New Pulverised Coal Fired Power Plant (PCPP)	
Power Capacity	~170MWe	~400MWe	2 * 660MWe	
Flue Gas Flow Rate	~650,000 Nm ³ /hr	~1,940,000 Nm ³ /hr	2 * ~ 2,350,000 Nm ³ /hr	
Absorbent Circulation Rate	~2,000 m ³ /hr	~2,100 m ³ /hr	2 * ~ 1,500 m³/hr	
CO ₂ Capacity	~3,300te/day	~3,200te/day	N/A	

Boundary D		Design	Peterhead Design		Guodian Duyun Design	
Equipment	Material	Dimensions/Size	Material	Dimensions/Size	Material	Dimensions/Size
Prescrubber (structure)	Lined concrete	~80m2 * ~12m	Lined concrete	~150m2 * ~35m	Lined concrete	2 * 420m2 * 30m
Absorber (Structure)	Lined concrete	~120 m2 * ~50m	Lined concrete	~400-450m2 * ~50m	Lined concrete	2 * 420m2 * 60m Total Tower Absorber ~12m
Absorber (internals)	304L SS / 316L SS	~ 21 m packing height	304L SS	~ 16 m packing height	316L SS	~ 5.5 m packing height
Stripper	316L SS	~45m2 * ~25m	316L SS	~55 m2 * ~27m	Clad CS	2 * 50m2 * 27m
CO ₂ Stripper (internals)	316L SS	~ 12 m packing height	316L SS	~ 9.5 m of packing height	316L SS /254 SMO	~ 5.5 m of packing height
Booster Fan	316L SS	~ 3 MWe	Mild steel	~ 8 MWe	Mild Steel	Not available
Reboilers	316L SS	~90 MWth	316L SS	~ 100-120 MWth	316L SS	2 * ~ 100 MWth

Ga